This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

³¹P NMR SPECTROSCOPIC EVIDENCE FOR THE MOLECULAR STRUCTURE OF P,Se,Hal, (Hal = Br, I)

P. Lönnecke^a; R. Blachnik^a

^a Institute of Chemistry, University of Osnabrück Barbarastr, Osnabrück

To cite this Article Lönnecke, P. and Blachnik, R.(1997) 131 P NMR SPECTROSCOPIC EVIDENCE FOR THE MOLECULAR STRUCTURE OF P_2 Se $_3$ Hal $_2$ (Hal = Br, I)', Phosphorus, Sulfur, and Silicon and the Related Elements, 131: 1, 191 — 196

To link to this Article: DOI: 10.1080/10426509708031607

URL: http://dx.doi.org/10.1080/10426509708031607

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Communication

³¹P NMR SPECTROSCOPIC EVIDENCE FOR THE MOLECULAR STRUCTURE OF P₂Se₃Hal₂ (Hal = Br, I)

P. LÖNNECKE and R. BLACHNIK*

Institute of Chemistry, University of Osnabrück Barbarastr. 7 D-49069 Osnabrück

(Received 16 July 1997)

The compounds $P_2Se_3Br_2$ 1 and $P_2Se_3I_2$ 2 were observed in CS_2 solution as by-products of the thermal synthesis of P_3Se_4Hal (Hal = Br, I). The analysis of their ³¹P and ⁷⁷Se NMR spectra allowed to determine the structure of these molecules and revealed the relation between 1, 2 and the bicycles P_3Se_4Hal and P_2Se_5 .

Keywords: 31P NMR spectra; 3,5-dibromo(iodo)-1,2,4,3,5-triselenadiphospholan

INTRODUCTION

Homonuclear S-S bonds have been observed frequently in monocyclic $(RP)_nS_m$ heterocycles. Analogous compounds with Se-Se bonds are rare and only a few examples are described in the literature. The molecular structures of $P_2Se_5^{[5]}$ and $P_3Se_4I^{[6]}$ reveal that excess selenium prefers homonuclear bonds instead of oxidizing P(III) to P(V). In the thermal synthesis of P_3Se_4Hal (Hal = Br, I) the five membered heterocycles 1 and 2 were observed as a by-product. They may be regarded as the parent compound of the bicycles P_3Se_4I and P_2Se_5 .

RESULTS AND DISCUSSION

The products of the thermal reaction of red phosphorus, selenium and halogen in the atomic ratio 3:4:1 had been analyzed by NMR spectroscopy in CS₂ solution. Besides the well known compounds PHal₃, α-P₄Se₃Hal₂ and P₃Se₄Hal

^{*}Corresponding author. Telefax +5419692370 E-mail. rblachni@rz.uni-osnabrueck.de

(Hal = Br, I) unknown signals were observed. Composition and molecular structure of these new compounds were gained from ³¹P and ⁷⁷Se NMR spectroscopy. The ³¹P- and ⁷⁷Se-NMR spectra of P₂Se₃I are given in Figure 1 and 2. The relation of the spin system of its ⁷⁷Se isotopomers with those of P₂Se₅^[5] is evident. Three kinds of isotopomers were observed: the ³¹P resonance signal of the ⁷⁷Se free isotopomer is flanked by two ⁷⁷Se satellite spectra. One isotopomer, P₂⁷⁷Se_aSe₂I₂ with ⁷⁷Se in the monoselenide bridge, gives rise to an A₂X spin system, the other one, P₂⁷⁷Se_bSe₂I₂ which contains ⁷⁷Se in the diselenide bridge, has an ABX spin system. Due to the low solubility the outer and less intense signals of the two AB subspectra can be observed only after a long accumulation time of the spectrum, similar to our observations for P₂Se₅. By combining these results with those of the ⁷⁷Se NMR measurement it was possible to determine all parameters (Table I).

For 1 the triplet of the $P_2^{77}Se_aSe_2Br_2$ isotopomer could not be observed in the ⁷⁷Se spectra. It is possible that these signals are superimposed by the multiplets of P_3Se_4Br or α - $P_4Se_3Br_2$ which are contained in higher concentrations in the CS_2 solution of the reaction products.

The chemical shifts of the phosphorus atoms in P₂Se₃Hal₂ moved to higher frequencies with the electronegativity of the halogen. This effect indicates, that the phosphorus atoms are directly bonded to the halogen. The magnitude of the changes were quite similar to those observed for corresponding monohalides P₃Se₄Hal.^[6] This observation, the large negative ¹J_{PSe} coupling constants, the equivalent P atoms in the ⁷⁷Se free isotopomer and the characteristic spin systems of the ⁷⁷Se isotopomer allowed to determine the molecular structure of 1 and 2, shown in Figure 3. In the five membered ring two P-Hal groups are connected by a mono- and a diselenide bridge. The measured intensities of the satellite spectra $(P_2^{77}Se_aSe_2Br_2:P_2^{77}Se_bSe_2Br_2 = 0.94:2.06$ and $P_2^{77}Se_aSe_2I_2:P_2^{77}Se_bSe_2I_2 = 0.91:2.08$) correlate well with the expected ratio of 1:2. These compounds are the first examples of phosphorus selenium heterocycles substituted only by halogen. The reaction of phosphorus, selenium and halogen in the ratio 2:3:2 yields a product in which 1 and 2 had been detected in higher concentrations. The preparation of pure 1 and 2 still failed because 1 decomposes during the evaporation of CS₂, and 2 could not be separated by fractional crystallization from the other products.

EXPERIMENTAL

All operations were carried out under dry argon using standard Schlenk techniques. 0.62 g (20 mmol) red phosphorus, 2.37 g (30 mmol) grey selenium and 2.54 g (20 mmol) iodine, resp. 1.60 g (20 mmol) bromine were sealed under

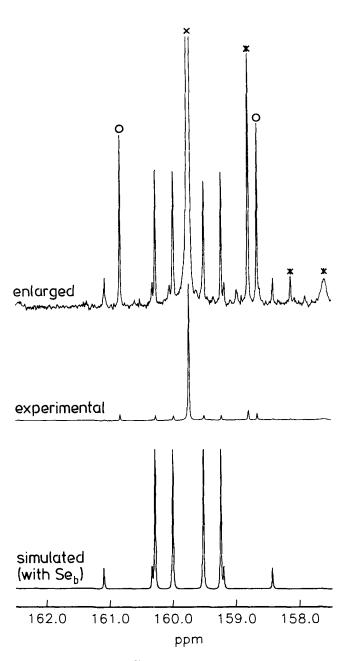


FIGURE 1 Experimental 31 P-NMR-spectrum of $P_2Se_3I_2$ with satellite signals: $x: P_2Se_3I_2$ main signal, o: doublet of the $P_2^{77}Se_aSe_2I_2$ isotopomer, *: impurities, simulated spectrum of the isotopomer with Se in position b

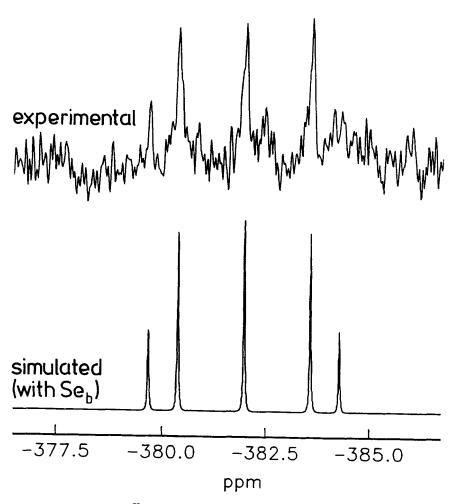


FIGURE 2 Experimental 77 Se NMR spectrum of $P_2Se_3I_2$, simulated spectrum of the isotopomer with Se in position b

vacuum in a Duran glass ampoule. The mixture was heated slowly to 200° C, then held at this temperature for one week. The homogeneous viscous melt was slowly cooled to room temperature. The resulting solid was stirred in 200 ml CS₂ for 1 d until the solid was finely ground. The solution was filtered through a filter tunnel for hot filtration to remove insoluble products.

The NMR spectra of the solutions were measured in a 10 mm diameter tube using a Bruker AC250 resp. AM 300 spectrometer with array processor operating at 101.256 MHz resp. 121.436 MHz for ³¹P and 57.315 MHz for ⁷⁷Se.

298 K.							
	δ_P	δ _{Se} [ppm]	¹ Δ _{PB} (Se) [ppb]	$^2J_{\rm PA}P^{\rm B}$	¹ J _{PA} Se ^a	² J _{PA} Se ^b [Hz]	$^{I}J_{\mathtt{P}^{B}}Se^{b}$
P ₂ Se ₃ Br ₂	180.96	_	_	_		-	_
$P_2^{77}Se_aSe_2Br_2$. —	†	+4.7		-285.3		_
$P_2^{77}Se_bSe_2Br_2$	_	-410.76	+3.1	100.2(4)	_	-0.1(4)	-196.9(9)
$P_2Se_3I_2$	159.71	_	_	_		_	_
$P_2^{77}Se_aSe_2I_2$	_			*******	- 264.5		
$P_2^{77}Se_bSe_2I_2$	_	-381.86	+4.0	98.3(1)		-3.9(5)	-181.0(2)

TABLE I 31P-and 77Se-NMR-spectroscopic data of $P_2Se_3Hal_2$ (Hal = Br, I). solvens: CS_2 ; T = 298 K.

[†] triplett was possibly superimposed in the ⁷⁷Se-NMR-spectrum by the signals of P₃Se₄Br and/or α-P₄Se₃Br₂

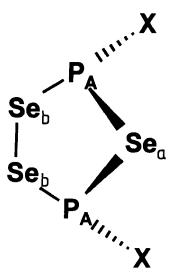


FIGURE 3 Structure of Triselenadiphospha-dihalide P₂Se₃Hal₂ (Hal = Br, I), Se_x = ⁷⁷Se

Measuring time was 15 h, measuring temperature 298 K. Precession capillaries containing C_6D_6 were used for locking und chemical shifts are reported relative to 85% H_3PO_4/H_2O (^{31}P) or saturated H_2SeO_3/H_2O solutions (^{77}Se). Spectra were analyzed using the programs NUMARIT^[7] and WINDAISY.^[8]

Acknowledgement

The authors wish to express their gratitude to the Deutsche Forschungsgemeinschaft and Fonds der Chemie for financial support.

References

- [1] J. Hahn and T. Nataniel, Z. Anorg. Allg. Chem., 548, 180 (1987).
- [2] J. Hahn and T. Nataniel, Z. Naturforsch., 42b, 1263 (1987).
- [3] K. Karaghiosoff, K. Eckstein and R. Motzer, Phosphorus, Sulfur and Silicon 93/94, 185 (1994).
- [4] J. Hahn, A. Hopp and A. Borkowsky, Phosphorus, Sulfur and Silicon, 64, 129 (1992).
- [5] R. Blachnik, H. P. Baldus, P. Lönnecke and B. W. Tattershall, Angew. Chem., 30, 605 (1991).
- [6] H. P. Baldus, R. Blachnik, P. Lönnecke and B. W. Tattershall, J. Chem. Soc. Dalton Trans., 2643 (1991).
- [7] A. R. Quirt, J. S. Martin and K. M. Worvill, NUMARIT Version 711, SERC NMR Program Library, Daresbury (1977).
- [8] WINDAISY, Spektreniterationsprogramm, Release 940801, Bruker-Franzen Analytik, Bremen (1994).